K-System Generator of Pseudorandom Numbers on Galois Field
نویسندگان
چکیده
منابع مشابه
On the multidimensional distribution of the subset sum generator of pseudorandom numbers
We show that for a random choice of the parameters, the subset sum pseudorandom number generator produces a sequence of uniformly and independently distributed pseudorandom numbers. The result can be useful for both cryptographic and quasi-Monte Carlo applications and relies on bounds of exponential sums.
متن کاملOn the Distribution of the Elliptic Subset Sum Generator of Pseudorandom Numbers
We show that for almost all choices of parameters, the elliptic subset sum pseudorandom number generator produces a sequence of uniformly distributed pseudorandom numbers. The result is useful for both cryptographic and Quasi Monte Carlo applications and relies on bounds of exponential sums.
متن کاملOn a nonlinear congruential pseudorandom number generator
A nonlinear congruential pseudorandom number generator with modulus M = 2w is proposed, which may be viewed to comprise both linear as well as inversive congruential generators. The condition for it to generate sequences of maximal period length is obtained. It is akin to the inversive one and bears a remarkable resemblance to the latter.
متن کاملPseudorandom Generator Based on Hard Lattice Problem
This paper studies how to construct a pseudorandom generator using hard lattice problems. We use a variation of the classical hard problem Inhomogeneous Small Integer Solution ISIS of lattice, say Inhomogeneous Subset Sum Solution ISSS. ISSS itself is a hash function. Proving the preimage sizes ISSS hash function images are almost the same, we construct a pseudorandom generator using the method...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Modern Physics C
سال: 1997
ISSN: 0129-1831,1793-6586
DOI: 10.1142/s0129183197000448